Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases
نویسندگان
چکیده
Until 2004, many researchers believed that protein methylation in eukaryotic cells was an irreversible reaction. However, the discovery of lysine-specific demethylase 1 in 2004 drastically changed this view and the concept of chromatin regulation. Since then, the enzymes responsible for lysine demethylation and their cellular substrates, biological significance, and selective regulation have become major research topics in epigenetics and chromatin biology. Many cell-permeable inhibitors for lysine demethylases have been developed, including both target-specific and nonspecific inhibitors. Structural understanding of how these inhibitors bind to lysine demethylases is crucial both for validation of the inhibitors as chemical probes and for the rational design of more potent, target-specific inhibitors. This review focuses on published small-molecule inhibitors targeted at the two flavin adenine dinucleotide-dependent lysine demethylases, lysine-specific demethylases 1 and 2, and how the inhibitors interact with the tertiary structures of the enzymes.
منابع مشابه
Structural basis for the inhibition of the LSD1 histone demethylase by the antidepressant trans-2-phenylcyclopropylamine.
Histone modifications, such as acetylation and methylation, are important epigenetic marks that regulate diverse biological processes that use chromatin as the template, including transcription. Dysregulation of histone acetylation and methylation leads to the silencing of tumor suppressor genes and contributes to cancer progression. Inhibitors of enzymes that catalyze the addition and removal ...
متن کاملBiochemistry and Occurrence of O-Demethylation in Plant Metabolism
Demethylases play a pivitol role in numerous biological processes from covalent histone modification and DNA repair to specialized metabolism in plants and microorganisms. Enzymes that catalyze O- and N-demethylation include 2-oxoglutarate (2OG)/Fe(II)-dependent dioxygenases, cytochromes P450, Rieske-domain proteins and flavin adenine dinucleotide (FAD)-dependent oxidases. Proposed mechanisms f...
متن کاملDisulfide relays between and within proteins: the Ero1p structure.
The essential flavoenzyme Ero1p both creates de novo disulfide bonds and transfers these disulfides to the folding catalyst protein disulfide isomerase (PDI). The recently solved crystal structure of Ero1p, in combination with previous biochemical, genetic and structural data, provides insight into the mechanism by which Ero1p accomplishes these tasks. A comparison of Ero1p with the smaller fla...
متن کاملActivity-Based Probes for Studying the Activity of Flavin-Dependent Oxidases and for the Protein Target Profiling of Monoamine Oxidase Inhibitors**
High profile: new activity-based protein profiling (ABPP) probes have been designed that target exclusively monoamine oxidases A and B within living cells (see picture; FAD=flavin adenine dinucleotide, FMN=flavin monodinucleotide). With these probes it could be shown that the MAO inhibitor deprenyl, which is in clinical use against Parkinson's disease, shows unique protein specificity despite i...
متن کاملAn unprecedented NADPH domain conformation in lysine monooxygenase NbtG provides insights into uncoupling of oxygen consumption from substrate hydroxylation.
N-Hydroxylating monooxygenases are involved in the biosynthesis of iron-chelating hydroxamate-containing siderophores that play a role in microbial virulence. These flavoenzymes catalyze the NADPH- and oxygen-dependent hydroxylation of amines such as those found on the side chains of lysine and ornithine. In this work we report the biochemical and structural characterization of Nocardia farcini...
متن کامل